

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pyzor 1.0 documentation

Welcome to Pyzor’s documentation!

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/pyzor/][image: Number of PyPI downloads]
 [https://pypi.python.org/pypi/pyzor/][image: Build status]
 [https://travis-ci.org/SpamExperts/pyzor]Contents:

	Introduction
	Contribute

	Getting the source

	Running tests

	License

	Getting Pyzor
	Installing

	Compatibility

	Downloading

	Dependencies
	Pyzor Client

	Pyzor Server

	Usage
	Pyzor Client
	Commands

	Servers File

	Input Style

	Pyzor Server
	Daemon

	Engines

	Access File

	Accounts

	Procmail

	ReadyExec

	Configuration
	client configuration

	server configuration

	Whitelisting

	Changelog
	Pyzor 1.0.0

	Pyzor 0.9.0

	Pyzor 0.8.0

	Pyzor 0.7.0

	Pyzor 0.6.0

	Pyzor 0.5.0

	About
	History

	Protocol

	Reference
	pyzor.engines
	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

	pyzor.hacks
	pyzor.hacks.py26

	pyzor.account

	pyzor.client

	pyzor.config

	pyzor.digest

	pyzor.forwarder

	pyzor.message

	pyzor.server

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Introduction

Pyzor is a collaborative, networked system to detect and block spam using
digests of messages.

Using Pyzor client a short digest is generated that is likely to uniquely
identify the email message. This digest is then sent to a Pyzor server to:

	check the number of times it has been reported as spam or whitelisted as
not-spam

	report the message as spam

	whitelist the message as not-spam

Since the entire system is released under the GPL, people are free to host
their own independent servers. There is, however, a well-maintained and
actively used public server available (courtesy of
SpamExperts [http://spamexperts.com]) at:

public.pyzor.org:24441

Contribute

	Issue Tracker [http://github.com/SpamExperts/pyzor/issues]

	Source Code [http://github.com/SpamExperts/pyzor]

Getting the source

To clone the repository using git simply run:

git clone https://github.com/SpamExperts/pyzor

Please feel free to fork us [https://github.com/SpamExperts/pyzor/fork]
and submit your pull requests.

Running tests

The pyzor tests are split into unittest and functional tests.

Unitests perform checks against the current source code and not
the installed version of pyzor. To run all the unittests suite:

env PYTHONPATH=. python tests/unit/__init__.py

Functional tests perform checks against the installed version of
pyzor and not the current source code. These are more extensive
and generally take longer to run. They also might need special setup.
To run the full suite of functional tests:

env PYTHONPATH=. python tests/functional/__init__.py

There is also a helper script [https://github.com/SpamExperts/pyzor/blob/master/scripts/run_tests] available that sets-up
the testing enviroment, also taking into consideration the python
version you are currently using:

./scripts/run_tests

Note

The authentication details for the MySQL functional tests are taken from
the test.conf [https://github.com/SpamExperts/pyzor/blob/master/test.conf] file.

License

The project is licensed under the
GNU GPLv2 [http://www.gnu.org/licenses/gpl-2.0.html] license.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Getting Pyzor

Installing

The recommended and easiest way to install Pyzor is with pip:

pip install pyzor

In order to upgrade your Pyzor version run:

pip install --upgrade pyzor

Compatibility

Pyzor is compatible with the following Python versions and implementations:

	Python 2.6

	Python 2.7

	Python 3.2+

	PyPy

	PyPy3

Pyzor will also work on Windows.

Downloading

If you don’t want to or cannot use pip to download and install Pyzor. You
can do so directly from the source:

python setup.py install

You can find the latest and older versions of Pyzor on
PyPI [https://pypi.python.org/pypi/pyzor].

Dependencies

Pyzor Client

If you plan on only using Pyzor to check message against our public server,
then there are no required dependencies.

Pyzor Server

If you want to host your own Pyzor Server then you will need an appropriate
back-end engine. Depending on what engine you want to use you will also need
to install the required python dependecies. Please see Engines
for more details.

The Pyzor also support the gevent library [http://www.gevent.org/]. If you
want to use this feature then you will need to first install it.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Usage

Contents:

	Pyzor Client
	Commands

	Servers File

	Input Style

	Pyzor Server
	Daemon

	Engines

	Access File

	Accounts

	Procmail

	ReadyExec

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Usage

Pyzor Client

The Pyzor Client is a Python script deployed with the package. It provides a
command line interface to the Pyzor Client API:

pyzor [options] command

You can also use the Python API directly to integrate Pyzor in your solution.
For more information see pyzor.client.

Commands

Check

Checks the message read from stdin and prints the number of times it has been
reported and the number of time it has been whitelisted. If multiple servers
are listed in the configuration file each server is checked:

$ pyzor check < spam.eml
public.pyzor.org:24441 (200, 'OK') 134504 4681

The exit code will be:

	1 if the report count is 0 or the whitelist count is > 0

	0 if the report count is > 0 and the whitelist count is 0

Note that you can configure this behaviour by changing the report/whitelist
thresholds from the configuration file or the command-line options.
See client configuration.

Info

Prints detailed information about the message. The exit code will always be
zero (0) if all servers returned (200, ‘OK’):

$ pyzor info < spam.eml
public.pyzor.org:24441 (200, 'OK')
 Count: 134538
 Entered: Sat Jan 4 10:01:34 2014
 Updated: Mon Mar 17 12:52:04 2014
WL-Count: 4681
 WL-Entered: Mon Jan 6 14:32:01 2014
 WL-Updated: Fri Mar 14 16:11:02 2014

Report

Reports to the server a digest of each message as spam. Writes to standard
output a tuple of (error-code, message) from the server. If multiple servers
are listed in the configuration file the message is reported to each one:

$ pyzor report < spam.eml
public.pyzor.org:24441 (200, 'OK')

Whitelist

Reports to the server a digest of each message as not-spam. Writes to standard
output a tuple of (error-code, message) from the server. If multiple servers
are listed in the configuration file the message is reported to each one:

$ pyzor whitelist < spam.eml
public.pyzor.org:24441 (200, 'OK')

Note

This command is not available by default for the anonymous user.

Ping

Merely requests a response from the servers:

$ pyzor ping
public.pyzor.org:24441 (200, 'OK')

Pong

Can be used to test pyzor, this will always return a large number of reports
and 0 whitelist, regardless of the message:

$ pyzor pong < ham.eml
public.pyzor.org:24441 (200, 'OK') 9223372036854775807 0

Predigest

Prints the message after the predigest phase of the pyzor algorithm:

$ pyzor predigest < test.eml
Thisisatest.

Digest

Prints the message digest, that will be sent to the server:

$ pyzor digest < spam.eml
c3a8e8d987f07843792d2ab1823b04cc3cb87482

Genkey

Based upon a secret passphrase gathered from the user and randomly gathered
salt, prints to standard output a tuple of “salt,key”. Used to put account
information into the accounts file.

Local Whitelist

Add a message to the local whitelist file, and therefore ignoring the digest
and returning 0 reports for the digest without contacting the pyzor server:

$ pyzor local_whitelist < false_positive.eml

Local UnWhitelist

Remove a message from the local whitelist file:

$ pyzor local_unwhitelist < false_positive.eml

Servers File

This file contains a list of servers that will be contacted by the Pyzor
client for every operation. If no servers are specified it defaults to the
public server:

public.pyzor.org:24441

The servers can also be specified as IP addresses, but they must always be
followed by the port number.

For example having this in ~/.pyzor/servers:

This is comment
public.pyzor.org:24441
127.0.0.1:24441

Will configure the client to check both the public server and a local one:

$ pyzor ping
public.pyzor.org:24441 (200, 'OK')
127.0.0.1:24441 (200, 'OK')

Input Style

Pyzor accepts messages in various forms. This can be controlled with the
style configuration or command line option. Currently support are:

	msg - individual RFC5321 message

	mbox - mbox file of messages

	digests - Pyzor digests, one per line

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Usage

Pyzor Server

The Pyzor Server will listen on the specified address and any serve request
from Pyzor Clients.

Daemon

Starting

The Pyzor Server can be started as a daemon by using the --detach option.
This will:

	daemonize the script and detach from tty

	create a pid file

	redirect any output to the specified file

Example:

$ pyzord --detach /dev/null --homedir=/home/user/.pyzor/

Stopping

To safely stop the Pyzor Server you can use the TERM signal to trigger
a safe shutdown:

$ kill -TERM `cat /home/user/.pyzor/pyzord.pid`

Reloading

The reload signal will tell the Pyzor Server to reopen and read the access and
passwd files. This is useful when adding new accounts or changing the
permissions for an existing account. This is done by sending the USR1
signal to the process:

$ kill -USR1 `cat /home/user/.pyzor/pyzord.pid`

Engines

The Pyzor Server supports a number of back-end database engines to store the
message digests.

Gdbm

This is the default engine, and the easiest to use and configure. But this it
is also highly inefficient and not recommended for servers that see a large
number of requests.

To use the the gdbm engine simply add to the config file
~/.pyzor/config:

[server]
Engine = gdbm
DigestDB = pyzord.db

The database file will be created if it didn’t previously exists, and will be
located as usual in the specified Pyzor homedir.

For more information about GDBM see http://www.gnu.org.ua/software/gdbm/.

MySQL

This will require the MySQL-python [https://pypi.python.org/pypi/MySQL-python] library.

Note

MySQL-python does not currently support Python 3

To configure the MySQL engine you will need to:

	Create a MySQL database (for e.g. pyzor)

	Create a MySQL table with the following schema:

CREATE TABLE `digests` (
 `digest` char(40) default NULL,
 `r_count` int(11) default NULL,
 `wl_count` int(11) default NULL,
 `r_entered` datetime default NULL,
 `wl_entered` datetime default NULL,
 `r_updated` datetime default NULL,
 `wl_updated` datetime default NULL,
 PRIMARY KEY (`digest`)
)

	Create a MySQL user

	Grant ALL PRIVILEGES to that user on the newly created table

To use the MySQL engine add to the configuration file:

[server]
Engine = mysql
DigestDB = localhost,user,password,pyzor,digests

Redis

This will require the redis [https://pypi.python.org/pypi/redis] library.

To use the redis engine simply add to the configuration file:

[server]
Engine = redis
DigestDB = localhost,6379,,0

Or if a password is required:

[server]
Engine = redis
DigestDB = localhost,6379,password,0

In the example above the redis database used is 0.

Migrating

If you want to migrate your database from one engine to another there is an
utility script installed with pyzor designed to do this. Note that the
arguments are the equivalent of the Engine and DigestDB options. Some
usage examples:

	Moving a database from gdbm to redis:

pyzor-migrate --se gdbm --sd testdata/backup.db --de redis --dd localhost,6379,,0

	Moving a database from redis to MySQL:

pyzor-migrate --se redis --sd localhost,6379,,0 --de mysql --dd localhost,root,,pyzor,public

Access File

This file can be used to restrict or grant access to various server-side
operations to accounts. For more information on setting up accounts see
accounts.

The format is very similar to the popular tcp_wrappers hosts.{allow,deny}:

privilege ... : username ... : allow|deny

	privilege:	a list of whitespace-separated commands The keyword all can
be used to to refer to all commands.

	username:	a list of whitespace-separated usernames. The keyword all
can be used to refer to all users other than the anonymous
user. The anonymous user is refereed to as anonymous.

	allow|deny:	whether or not the specified user(s) can perform the specified
privilege(s) on the line.

The file is processed from top to bottom, with the first match for
user/privilege being the value taken. Every file has the following implicit
final rule:

all : all anonymous : deny

If this file is non-existant, the following default is used:

check report ping pong info : anonymous : allow

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Usage

Accounts

Pyzor Accounts can be used to grant or restrict access to the Pyzor Server, by
ensuring the client are authenticated.

To get an account on a server requires coordination between the client user
and server admin. Use the following steps:

	User and admin should agree on a username for the user. Allowed characters
for a username are alpha-numerics, the underscore, and dashes.
The normative regular expression it must match is ^[-\.\w]+$. Let us
assume they have agreed on bob.

	User generates a key with pyzor genkey. Let us say that it generates
the salt,key of:

227bfb58efaba7c582d9dcb66ab2063d38df2923,8da9f54058c34e383e997f45d6eb74837139f83b

	Assuming the server is at 127.0.0.1:9999, the user puts the following
entry into ~/.pyzor/accounts:

127.0.0.1 : 9999 : bob : 227bfb58efaba7c582d9dcb66ab2063d38df2923,8da9f54058c34e383e997f45d6eb74837139f83b

This tells the Pyzor Client to use the bob account for server
127.0.0.1:9999. It will still use the anonymous user for all other
servers.

	The user then sends the key (the part to the right-hand side of the comma)
to the admin.

	The admin adds the key to their ~/.pyzor/pyzord.passwd:

bob : 8da9f54058c34e383e997f45d6eb74837139f83b

	Assuming the admin wants to give the privilege of whitelisting (in addition
to the normal permissions), the admin then adds the appropriate permissions
to ~/.pyzor/pyzord.access:

check report ping pong info whitelist : bob : allow

For more information see Access File.

	To reload the account and access information send the USR1 signal to
the daemon.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Usage

Procmail

To use Pyzor in a procmail system, consider using the following simple recipe:

 :0 Wc
| pyzor check :0 a
pyzor-caught

If you prefer, you can merely add a header to message marked with Pyzor,
instead of immediately filtering them into a separate folder:

 :0 Wc
| pyzor check :0 Waf
| formail -A 'X-Pyzor: spam'

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Usage

ReadyExec

ReadyExec [http://readyexec.sourceforge.net/] is a system to eliminate the
high startup-cost of executing scripts repeatedly. If you execute Pyzor a lot,
you might be interested in installing ReadyExec and using it with Pyzor.

To use Pyzor with ReadyExec, the readyexecd.py server needs to be started as:

readyexecd.py socket_file pyzor.client.run

socket_file can be any (non-existing) filename you wish ReadyExec to use,
such as /tmp/pyzor:

readyexecd.py /tmp/pyzor pyzor.client.run

Individual clients are then executed as:

readyexec socket_file options command cmd_options

For example:

readyexec /tmp/pyzor check
readyexec /tmp/pyzor report
readyexec /tmp/pyzor whitelist --style=mbox
readyexec /tmp/pyzor -d ping

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Configuration

The format of this file is INI-style (name=value, divided into [sections]).
Names are case insensitive. All values which are filenames can have shell-style
tildes (~) in them. All values which are relative filenames are interpreted to
be relative to the Pyzor homedir. All of these options can be overridden by
command-line arguments.

It is recommended to use the provided sample configuration [https://github.com/SpamExperts/pyzor/blob/master/config/config.sample]. Simply copy it in
pyzor’s homedir, remove the .sample from the name and alter any
configurations you prefer.

client configuration

	ServersFile

	Must contain a newline-separated list of server addresses to
report/whitelist/check with. All of these server will be contacted for
every operation. See Servers File.

	AccountsFile

	File containing information about accounts on servers. See Accounts.

	LogFile

	If this is empty then logging is done to stdout.

	LocalWhitelist

	Specify the local whitelist file name.

	Timeout

	This options specifies the number of seconds that the pyzor client should
wait for a response from the server before timing out.

	Style

	Specify the message input style. See Input Style.

	ReportThreshold

	If the number of reports exceeds this threshold then the exit code of the
pyzor client is 0.

	WhitelistThreshold

	If the number of whitelists exceed this threshold then exit code of the
pyzor client is 1.

server configuration

	Port

	Port to listen on.

	ListenAddress

	Address to listen on.

	LogFile

	File to contain server logs.

	SentryDSN

	If set add a SentryHandler to the log file.

	SentryLogLevel

	Set the log level for the SentryHandler. (default is WARN)

	UsageLogFile

	File to contain server usage logs (information about each request).

	UsageSentryDSN

	If set add a SentryHandler to the usage log file.

	UsageSentryLogLevel

	Set the log level for the usage SentryHandler. (default is WARN)

	PidFile

	This file contain the pid of the pyzord daemon when used with the
–detach option.

	PasswdFile

	File containing a list of user account information. See Accounts.

	AccessFile

	File containing information about user privileges. See
Access File.

	Gevent

	If set to true uses the gevent library.

	Engine

	Then engine type to be used for storage. See Engines.

	DigestDB

	The database connection information. Format varies depending on the engine
used. See Engines.

	CleanupAge

	The maximum age of a record before it gets removed (in seconds). To
disable this set to 0.

	PreFork

	The number of workers the pyzor server should start. The server will
pre-fork itself and split handling the requests among all workers.
This is disabled by default.

	Threads

	If set to true, the pyzor server will use multi-threading to serve
requests.

	MaxThreads

	The maximum number of concurrent threads (0 means unlimited).

	DBConnections

	The number of database connections kept opened by the server (0 means a
new one for each request).

Note

DBConnections only applies to the MySQL engine.

	Processes

	If set to true, the pyzor server will use multi-processing to serve
requests.

	MaxProcesses

	The maximum number of concurrent processes (cannot be unlimited).

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Whitelisting

Whitelisting messages is disabled by default on the public server
(public.pyzor.org). However if you want to request a whitelist you can
use the web service at:

http://public.pyzor.org/whitelist/

You need to upload the raw message and the corresponding pyzor message digest.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Changelog

Pyzor 1.0.0

New features:

	New pyzor commands local_[un]whitelist are available for managing
a local whitelist on the client side. (#10 [https://github.com/SpamExperts/pyzor/issues/10])

	New PreFork option for the pyzor server. This allows creating multiple
workers for handling pyzor requests. (#26 [https://github.com/SpamExperts/pyzor/issues/26])

Perfomance enhancements:

	Improve usage of the Redis engine by using Hashes instead of string for
storing digests. The migration tool can be used to update you current
database. (#29 [https://github.com/SpamExperts/pyzor/issues/29])

Others:

	PyPy3 compatibility verified and introduced into the Travis-CI system. (#24 [https://github.com/SpamExperts/pyzor/issues/24])

	Unification of the storage engines types. (#30 [https://github.com/SpamExperts/pyzor/issues/30])

	Improved check on the public whitelisting request service to skip sending
requests to whitelist message that have not been reported to the public
database or have been already whitelisted. (#27 [https://github.com/SpamExperts/pyzor/issues/27])

Pyzor 0.9.0

Bug fixes:

	Fix gdbm decoding issue. (#20 [https://github.com/SpamExperts/pyzor/issues/20])

	Fix inconsistencies accounts and addresses. (#22 [https://github.com/SpamExperts/pyzor/issues/22])

New features:

	Strip content inside <style> and <script> tags during HTML
normalization. (#19 [https://github.com/SpamExperts/pyzor/issues/19])

	Improvements in Pyzor client error codes. (#17 [https://github.com/SpamExperts/pyzor/issues/17])

	Add support for logging to Sentry (#7 [https://github.com/SpamExperts/pyzor/issues/7])

Perfomance enhancements:

	Do report and whitelist in a single step for MySQL Server Engine.
(#5 [https://github.com/SpamExperts/pyzor/issues/5])

Others:

	You can now requests whitelisting a message by using a simple form
available at: http://public.pyzor.org/whitelist/

Pyzor 0.8.0

Bug fixes:

	Fix unicode decoding issues. (#1 [https://github.com/SpamExperts/pyzor/issues/1])

New features:

	A new option for the pyzor server to set-up digest forwarding.

	A new script pyzor-migrate is now available. The script allows
migrating your digest database from one engine to another.
(#2 [https://github.com/SpamExperts/pyzor/issues/2])

Perfomance enhancements:

	Use multiple threads when connecting to multiple servers in the pyzor
client script. (#5 [https://github.com/SpamExperts/pyzor/issues/5])

	A new BatchClient is available in pyzor client API. The client
now send reports in batches to the pyzor server.
(#13 [https://github.com/SpamExperts/pyzor/issues/13])

Others:

	Small adjustments to the pyzor scripts to add Windows compatibility.

	Automatically build documentation.

	Continuous integration on Travis-CI [https://travis-ci.org/SpamExperts/pyzor].

	Test coverage on coveralls [https://coveralls.io/r/SpamExperts/pyzor?branch=master].

Pyzor 0.7.0

Bug fixes:

	Fix decoding bug when messages are badly formed

	Pyzor now correctly creates the specified homedir, not the user’s one

New features:

	Logging is now disabled by default

	Automatically run 2to3 during installation (if required)

New pyzord features:

	Added ability to disable expiry

	New redis engine support has been added

	New option to enable gevent

	Added the ability to reload accounts and access files using USR1 signal

	Added the ability to safely stop the daemon with TERM signal

	Split the usage-log and normal log in two separate files

	Pyzord daemon can now daemonize and detach itself

Pyzor 0.6.0

	pyzor and pyzord will now work with Python3.3 (if
the the 2to3-3.3 is previously ran)

	pyzord and pyzor now supports IPv6

	Improved handling of multi-threading (signals where
again removed) for the mysql engine

	Introduced multi-processing capabilities

	Improved HTML parsing

	Introduced self document sample configurations

	Introduced ability to set custom report/whitelist thresholds
for the pyzor client

	Greatly improved tests coverage

Pyzor 0.5.0

Note that the majority of changes in this release were contributed back
from the Debian pyzor package.

	Man pages for pyzor and pyzord.

	Changing back to signals for database locking,
rather than threads. It is likely that signals
will be removed again in the future, but the
existing threading changes caused problems.

	Basic checks on the results of “discover”.

	Extended mbox support throughout the library.

	Better handling on unknown encodings.

	Added a –log option to log to a file.

	Better handling of command-line options.

	Improved error handling.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

About

History

Pyzor initially started out to be merely a Python implementation of Razor, but
due to the protocol and the fact that Razor’s server is not Open Source or
software libre, Frank Tobin decided to implement Pyzor with a new protocol and
release the entire system as Open Source and software libre.

Protocol

The central premise of Pyzor is that it converts an email message to a short
digest that uniquely identifies the message. Simply hashing the entire message
is an ineffective method of generating a digest, because message headers will
differ when the content does not, and because spammers will often try to make
a message unique by injecting random/unrelated text into their messages.

To generate a digest, the 2.0 version of the Pyzor protocol:

	Discards all message headers.

	If the message is greater than 4 lines in length:

	Discards the first 20% of the message.

	Uses the next 3 lines.

	Discards the next 40% of the message.

	Uses the next 3 lines.

	Discards the remainder of the message.

	Removes any ‘words’ (sequences of characters separated by whitespace) that are 10 or more characters long.

	Removes anything that looks like an email address (X@Y).

	Removes anything that looks like a URL.

	Removes anything that looks like HTML tags.

	Removes any whitespace.

	Discards any lines that are fewer than 8 characters in length.

This is intended as an easy-to-understand explanation, rather than a technical one.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

Reference

	pyzor.engines
	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

	pyzor.hacks
	pyzor.hacks.py26

	pyzor.account

	pyzor.client

	pyzor.config

	pyzor.digest

	pyzor.forwarder

	pyzor.message

	pyzor.server

Networked spam-signature detection.

	
exception pyzor.AuthorizationError

	Bases: pyzor.CommError

The signature was valid, but the user is not permitted to do the
requested action.

	
exception pyzor.CommError

	Bases: exceptions.Exception

Something in general went wrong with the transaction.

	
code = 400

	

	
exception pyzor.IncompleteMessageError

	Bases: pyzor.ProtocolError

A complete requested was not received.

	
exception pyzor.ProtocolError

	Bases: pyzor.CommError

Something is wrong with talking the protocol.

	
code = 400

	

	
exception pyzor.SignatureError

	Bases: pyzor.CommError

Unknown user, signature on msg invalid, or not within allowed time
range.

	
exception pyzor.TimeoutError

	Bases: pyzor.CommError

The connection timed out.

	
code = 504

	

	
exception pyzor.UnsupportedVersionError

	Bases: pyzor.ProtocolError

Client is using an unsupported protocol version.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.engines

	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

Database backends for pyzord.

The database class must expose a dictionary-like interface, allowing access
via __getitem__, __setitem__, and __delitem__. The key will be a forty
character string, and the value should be an instance of the Record class.

If the database backend cannot store the Record objects natively, then it
must transparently take care of translating to/from Record objects in
__setitem__ and __getitem__.

The database class should take care of expiring old values at the
appropriate interval.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

 	pyzor.engines

pyzor.engines.common

Common library shared by different engines.

	
class pyzor.engines.common.DBHandle(single_threaded, multi_threaded, multi_processing, prefork)

	Bases: tuple

	
multi_processing

	Alias for field number 2

	
multi_threaded

	Alias for field number 1

	
prefork

	Alias for field number 3

	
single_threaded

	Alias for field number 0

	
exception pyzor.engines.common.DatabaseError

	Bases: exceptions.Exception

	
class pyzor.engines.common.Record(r_count=0, wl_count=0, r_entered=None, r_updated=None, wl_entered=None, wl_updated=None)

	Bases: object

Prefix conventions used in this class:
r = report (spam)
wl = whitelist

	
r_increment()

	

	
r_update()

	

	
wl_increment()

	

	
wl_update()

	

	
class pyzor.engines.common.BaseEngine

	Bases: object

Base class for Pyzor engines.

	
absolute_source = True

	

	
classmethod get_prefork_connections(fn, mode, max_age=None)

	Yields an unlimited number of partial functions that return a new
engine instance, suitable for using toghether with the Pre-Fork server.

	
handles_one_step = False

	

	
items()

	Return a list of (key, record).

	
iteritems()

	Iterate over pairs of (key, record).

	
report(keys)

	Report the corresponding key as spam, incrementing the report count.

Engines that implement don’t implement this method should have
handles_one_step set to False.

	
whitelist(keys)

	Report the corresponding key as ham, incrementing the whitelist
count.

Engines that implement don’t implement this method should have
handles_one_step set to False.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

 	pyzor.engines

pyzor.engines.gdbm

Gdbm database engine.

	
class pyzor.engines.gdbm_.GdbmDBHandle(fn, mode, max_age=None)

	Bases: pyzor.engines.common.BaseEngine

	
absolute_source = True

	

	
apply_method(method, varargs=(), kwargs=None)

	

	
classmethod decode_record(s)

	

	
static decode_record_0(s)

	

	
classmethod decode_record_1(s)

	

	
classmethod encode_record(value)

	

	
fields = ('r_count', 'r_entered', 'r_updated', 'wl_count', 'wl_entered', 'wl_updated')

	

	
handles_one_step = False

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object>

	

	
reorganize_period = 86400

	

	
start_reorganizing()

	

	
start_syncing()

	

	
sync_period = 60

	

	
this_version = '1'

	

	
class pyzor.engines.gdbm_.ThreadedGdbmDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.gdbm_.GdbmDBHandle

Like GdbmDBHandle, but handles multi-threaded access.

	
apply_method(method, varargs=(), kwargs=None)

	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

 	pyzor.engines

pyzor.engines.mysql

MySQLdb database engine.

	
class pyzor.engines.mysql.MySQLDBHandle(fn, mode, max_age=None)

	Bases: pyzor.engines.common.BaseEngine

	
absolute_source = False

	

	
classmethod get_prefork_connections(fn, mode, max_age=None)

	Yields a number of database connections suitable for a Pyzor
pre-fork server.

	
handles_one_step = True

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object>

	

	
reconnect()

	

	
reconnect_period = 60

	

	
reorganize_period = 86400

	

	
report(keys)

	

	
start_reorganizing()

	

	
whitelist(keys)

	

	
class pyzor.engines.mysql.ProcessMySQLDBHandle(fn, mode, max_age=None)

	Bases: pyzor.engines.mysql.MySQLDBHandle

	
reconnect()

	

	
class pyzor.engines.mysql.ThreadedMySQLDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.mysql.MySQLDBHandle

	
reconnect()

	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

 	pyzor.engines

pyzor.engines.redis

Redis database engine.

	
class pyzor.engines.redis_.RedisDBHandle(fn, mode, max_age=None)

	Bases: pyzor.engines.common.BaseEngine

	
absolute_source = False

	

	
classmethod get_prefork_connections(fn, mode, max_age=None)

	Yields a number of database connections suitable for a Pyzor
pre-fork server.

	
handles_one_step = True

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object>

	

	
report(*args, **kwargs)

	

	
whitelist(*args, **kwargs)

	

	
class pyzor.engines.redis_.ThreadedRedisDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.redis_.RedisDBHandle

	
pyzor.engines.redis_.decode_date(stamp)

	Return a datetime object from a Unix Timestamp.

	
pyzor.engines.redis_.encode_date(date)

	Convert the date to Unix Timestamp

	
pyzor.engines.redis_.safe_call(f)

	Decorator that wraps a method for handling database operations.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.hacks

	pyzor.hacks.py26

Various hack to make pyzor compatible with different Python versions.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

 	pyzor.hacks

pyzor.hacks.py26

Hacks for Python 2.6

	
pyzor.hacks.py26.hack_all(email=True, select=True)

	Apply all Python 2.6 patches.

	
pyzor.hacks.py26.hack_email()

	The python2.6 version of email.message_from_string, doesn’t work with
unicode strings. And in python3 it will only work with a decoded.

So switch to using only message_from_bytes.

	
pyzor.hacks.py26.hack_select()

	The python2.6 version of SocketServer does not handle interrupt calls
from signals. Patch the select call if necessary.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.account

A collection of utilities that facilitate working with Pyzor accounts.

Note that accounts are not necessary (on the client or server), as an
“anonymous” account always exists.

	
class pyzor.account.Account(username, salt, key)

	Bases: object

	
pyzor.account.hash_key(key, user, hash_=<built-in function openssl_sha1>)

	Returns the hash key for this username and password.

lower(H(U + ‘:’ + lower(K)))
K is key (hex string)
U is username
H is the hash function (currently SHA1)

	
pyzor.account.key_from_hexstr(s)

	

	
pyzor.account.sign_msg(hashed_key, timestamp, msg, hash_=<built-in function openssl_sha1>)

	Converts the key, timestamp (epoch seconds), and msg into a digest.

lower(H(H(M) + ‘:’ T + ‘:’ + K))
M is message
T is integer epoch timestamp
K is hashed_key
H is the hash function (currently SHA1)

	
pyzor.account.verify_signature(msg, user_key)

	Verify that the provided message is correctly signed.

The message must have “User”, “Time”, and “Sig” headers.

If the signature is valid, then the function returns normally.
If the signature is not valid, then a pyzor.SignatureError() exception
is raised.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.client

Networked spam-signature detection client.

>>> import pyzor
>>> import pyzor.client
>>> import pyzor.digest
>>> import pyzor.config

To load the accounts file:

>>> accounts = pyzor.config.load_accounts(filename)

To create a client (to then issue commands):

>>> client = pyzor.client.Client(accounts)

To create a client, using the anonymous user:

>>> client = pyzor.client.Client()

To get a digest (of an email.message.Message object, or similar):

>>> digest = pyzor.digest.get_digest(msg)

To query a server (where address is a (host, port) pair):

>>> client.ping(address)
>>> client.info(digest, address)
>>> client.report(digest, address)
>>> client.whitelist(digest, address)
>>> client.check(digest, address)

To query the default server (public.pyzor.org):

>>> client.ping()
>>> client.info(digest)
>>> client.report(digest)
>>> client.whitelist(digest)
>>> client.check(digest)

Response will contain, depending on the type of request, some
of the following keys (e.g. client.ping()[‘Code’]):

All responses will have:
- ‘Diag’ ‘OK’ or error message
- ‘Code’ ‘200’ if OK
- ‘PV’ Protocol Version
- ‘Thread’

info and check responses will also contain:
- ‘[WL-]Count’ Whitelist/Blacklist count

info responses will also have:
- ‘[WL-]Entered’ timestamp when message was first whitelisted/blacklisted
- ‘[WL-]Updated’ timestamp when message was last whitelisted/blacklisted

	
class pyzor.client.BatchClient(accounts=None, timeout=None, spec=None, batch_size=10)

	Bases: pyzor.client.Client

Like the normal Client but with support for batching reports.

	
flush()

	Deleting any saved digest reports.

	
force()

	Force send any remaining reports.

	
report(digest, address=('public.pyzor.org', 24441))

	

	
whitelist(digest, address=('public.pyzor.org', 24441))

	

	
class pyzor.client.CheckClientRunner(routine, r_count=0, wl_count=0)

	Bases: pyzor.client.ClientRunner

	
handle_response(response, message)

	

	
class pyzor.client.Client(accounts=None, timeout=None, spec=None)

	Bases: object

	
check(digest, address=('public.pyzor.org', 24441))

	

	
info(digest, address=('public.pyzor.org', 24441))

	

	
max_packet_size = 8192

	

	
ping(address=('public.pyzor.org', 24441))

	

	
pong(digest, address=('public.pyzor.org', 24441))

	

	
read_response(sock, expected_id)

	

	
report(digest, address=('public.pyzor.org', 24441))

	

	
send(msg, address=('public.pyzor.org', 24441))

	

	
timeout = 5

	

	
whitelist(digest, address=('public.pyzor.org', 24441))

	

	
class pyzor.client.ClientRunner(routine)

	Bases: object

	
handle_response(response, message)

	mesaage is a string we’ve built up so far

	
run(server, args, kwargs=None)

	

	
class pyzor.client.InfoClientRunner(routine)

	Bases: pyzor.client.ClientRunner

	
handle_response(response, message)

	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.config

Functions that handle parsing pyzor configuration files.

	
pyzor.config.expand_homefiles(homefiles, category, homedir, config)

	Set the full file path for these configuration files.

	
pyzor.config.load_access_file(access_fn, accounts)

	Load the ACL from the specified file, if it exists, and return an
ACL dictionary, where each key is a username and each value is a set
of allowed permissions (if the permission is not in the set, then it
is not allowed).

‘accounts’ is a dictionary of accounts that exist on the server - only
the keys are used, which must be the usernames (these are the users
that are granted permission when the ‘all’ keyword is used, as
described below).

	Each line of the file should be in the following format:

	operation : user : allow|deny

where ‘operation’ is a space-separated list of pyzor commands or the
keyword ‘all’ (meaning all commands), ‘username’ is a space-separated
list of usernames or the keyword ‘all’ (meaning all users) - the
anonymous user is called “anonymous”, and “allow|deny” indicates whether
or not the specified user(s) may execute the specified operations.

The file is processed from top to bottom, with the final match for
user/operation being the value taken. Every file has the following
implicit final rule:

all : all : deny

	If the file does not exist, then the following default is used:

	check report ping info : anonymous : allow

	
pyzor.config.load_accounts(filepath)

	Layout of file is: host : port : username : salt,key

	
pyzor.config.load_local_whitelist(filepath)

	Load the local digest skip file.

	
pyzor.config.load_passwd_file(passwd_fn)

	Load the accounts from the specified file.

	Each line of the file should be in the format:

	username : key

If the file does not exist, then an empty dictionary is returned;
otherwise, a dictionary of (username, key) items is returned.

	
pyzor.config.load_servers(filepath)

	Load the servers file.

	
pyzor.config.setup_logging(log_name, filepath, debug, sentry_dsn=None, sentry_lvl='WARN')

	Setup logging according to the specified options. Return the Logger
object.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.digest

Handle digesting the messages.

	
class pyzor.digest.DataDigester(msg, spec=None)

	Bases: object

The major workhouse class.

	
atomic_num_lines = 4

	

	
digest

	

	
classmethod digest_payloads(msg)

	

	
email_ptrn = <_sre.SRE_Pattern object>

	

	
handle_atomic(lines)

	We digest everything.

	
handle_line(line)

	

	
handle_pieced(lines, spec)

	Digest stuff according to the spec.

	
longstr_ptrn = <_sre.SRE_Pattern object>

	

	
min_line_length = 8

	

	
classmethod normalize(s)

	

	
static normalize_html_part(s)

	

	
classmethod should_handle_line(s)

	

	
unwanted_txt_repl = ''

	

	
url_ptrn = <_sre.SRE_Pattern object>

	

	
value

	

	
ws_ptrn = <_sre.SRE_Pattern object>

	

	
class pyzor.digest.HTMLStripper(collector)

	Bases: HTMLParser.HTMLParser

Strip all tags from the HTML.

	
handle_data(data)

	Keep track of the data.

	
handle_endtag(tag)

	

	
handle_starttag(tag, attrs)

	

	
class pyzor.digest.PrintingDataDigester(msg, spec=None)

	Bases: pyzor.digest.DataDigester

Extends DataDigester: prints out what we’re digesting.

	
handle_line(line)

	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.forwarder

Manage the forwarder process.

	
class pyzor.forwarder.Forwarder(forwarding_client, remote_servers, max_queue_size=10000)

	Bases: object

Forwards digest to remote pyzor servers

	
queue_forward_request(digest, whitelist=False)

	If forwarding is enabled, insert a digest into the forwarding queue
if whitelist is True, the digest will be forwarded as whitelist request
if the queue is full, the digest is dropped

	
start_forwarding()

	start the forwarding thread

	
stop_forwarding()

	disable forwarding and tell the forwarding thread to end itself

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.message

This modules contains the various messages used in the pyzor client server
communication.

	
class pyzor.message.CheckRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'check'

	

	
class pyzor.message.ClientSideRequest

	Bases: pyzor.message.Request

	
op = None

	

	
setup()

	

	
class pyzor.message.InfoRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'info'

	

	
class pyzor.message.Message

	Bases: email.message.Message

	
ensure_complete()

	

	
init_for_sending()

	

	
setup()

	

	
class pyzor.message.PingRequest

	Bases: pyzor.message.ClientSideRequest

	
op = 'ping'

	

	
class pyzor.message.PongRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'pong'

	

	
class pyzor.message.ReportRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestSpecBasedRequest

	
op = 'report'

	

	
class pyzor.message.Request

	Bases: pyzor.message.ThreadedMessage

This is the class that should be used to read in Requests of any type.
Subclasses are responsible for setting ‘Op’ if they are generating a
message,

	
ensure_complete()

	

	
get_op()

	

	
class pyzor.message.Response

	Bases: pyzor.message.ThreadedMessage

	
ensure_complete()

	

	
get_code()

	

	
get_diag()

	

	
head_tuple()

	

	
is_ok()

	

	
ok_code = 200

	

	
class pyzor.message.SimpleDigestBasedRequest(digest=None)

	Bases: pyzor.message.ClientSideRequest

	
add_digest(digest)

	

	
class pyzor.message.SimpleDigestSpecBasedRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
class pyzor.message.ThreadId

	Bases: int

	
error_value = 0

	

	
full_range = (0, 65536)

	

	
classmethod generate()

	

	
in_ok_range()

	

	
ok_range = (1024, 65536)

	

	
class pyzor.message.ThreadedMessage

	Bases: pyzor.message.Message

	
ensure_complete()

	

	
get_protocol_version()

	

	
get_thread()

	

	
init_for_sending()

	

	
set_thread(i)

	

	
class pyzor.message.WhitelistRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestSpecBasedRequest

	
op = 'whitelist'

	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pyzor 1.0 documentation

 	Reference

pyzor.server

Networked spam-signature detection server.

The server receives the request in the form of a RFC5321 message, and
responds with another RFC5321 message. Neither of these messages has a
body - all of the data is encapsulated in the headers.

The response headers will always include a “Code” header, which is a
HTTP-style response code, and a “Diag” header, which is a human-readable
message explaining the response code (typically this will be “OK”).

Both the request and response headers always include a “PV” header, which
indicates the protocol version that is being used (in a major.minor format).
Both the requestion and response headers also always include a “Thread”,
which uniquely identifies the request (this is a requirement of using UDP).
Responses to requests may arrive in any order, but the “Thread” header of
a response will always match the “Thread” header of the appropriate request.

Authenticated requests must also have “User”, “Time” (timestamp), and “Sig”
(signature) headers.

	
class pyzor.server.BoundedThreadingServer(address, database, passwd_fn, access_fn, max_threads, forwarding_server=None)

	Bases: pyzor.server.ThreadingServer

Same as ThreadingServer but this also accepts a limited number of
concurrent threads.

	
process_request(request, client_address)

	

	
process_request_thread(request, client_address)

	

	
class pyzor.server.PreForkServer(address, database, passwd_fn, access_fn, prefork=4)

	Bases: pyzor.server.Server

The same as Server, but prefork itself when starting the self, by
forking a number of child-processes.

The parent process will then wait for all his child process to complete.

	
load_config()

	If this is the parent process send the USR1 signal to all children,
else call the super method.

	
serve_forever(poll_interval=0.5)

	Fork the current process and wait for all children to finish.

	
shutdown()

	If this is the parent process send the TERM signal to all children,
else call the super method.

	
class pyzor.server.ProcessServer(address, database, passwd_fn, access_fn, max_children=40, forwarding_server=None)

	Bases: SocketServer.ForkingMixIn, pyzor.server.Server

A multi-processing version of the pyzord server. Each connection is
served in a new process. This may not be suitable for all database types.

	
class pyzor.server.RequestHandler(*args, **kwargs)

	Bases: SocketServer.DatagramRequestHandler

Handle a single pyzord request.

	
dispatches = {'info': <function handle_info at 0x7f8aab0767d0>, 'whitelist': <function handle_whitelist at 0x7f8aab076758>, 'ping': None, 'report': <function handle_report at 0x7f8aab0766e0>, 'pong': <function handle_pong at 0x7f8aab0765f0>, 'check': <function handle_check at 0x7f8aab076668>}

	

	
handle()

	Handle a pyzord operation, cleanly handling any errors.

	
handle_check(digests)

	Handle the ‘check’ command.

This command returns the spam/ham counts for the specified digest.

	
handle_error(code, message)

	Create an appropriate response for an error.

	
handle_info(digests)

	Handle the ‘info’ command.

This command returns diagnostic data about a digest (timestamps for
when the digest was first/last seen as spam/ham, and spam/ham
counts).

	
handle_pong(digests)

	Handle the ‘pong’ command.

This command returns maxint for report counts and 0 whitelist.

	
handle_report(digests)

	Handle the ‘report’ command in a single step.

This command increases the spam count for the specified digests.

	
handle_whitelist(digests)

	Handle the ‘whitelist’ command in a single step.

This command increases the ham count for the specified digests.

	
class pyzor.server.Server(address, database, passwd_fn, access_fn, forwarder=None)

	Bases: SocketServer.UDPServer

The pyzord server. Handles incoming UDP connections in a single
thread and single process.

	
handle_error(request, client_address)

	

	
load_config()

	Reads the configuration files and loads the accounts and ACLs.

	
max_packet_size = 8192

	

	
reload_handler(*args, **kwargs)

	Handler for the SIGUSR1 signal. This should be used to reload
the configuration files.

	
shutdown_handler(*args, **kwargs)

	Handler for the SIGTERM signal. This should be used to kill the
daemon and ensure proper clean-up.

	
time_diff_allowance = 180

	

	
class pyzor.server.ThreadingServer(address, database, passwd_fn, access_fn, forwarder=None)

	Bases: SocketServer.ThreadingMixIn, pyzor.server.Server

A threaded version of the pyzord server. Each connection is served
in a new thread. This may not be suitable for all database types.

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pyzor 1.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyzor	

 	
 	
 pyzor.account	

 	
 	
 pyzor.client	

 	
 	
 pyzor.config	

 	
 	
 pyzor.digest	

 	
 	
 pyzor.engines	

 	
 	
 pyzor.engines.common	

 	
 	
 pyzor.engines.gdbm_	

 	
 	
 pyzor.engines.mysql	

 	
 	
 pyzor.engines.redis_	

 	
 	
 pyzor.forwarder	

 	
 	
 pyzor.hacks	

 	
 	
 pyzor.hacks.py26	

 	
 	
 pyzor.message	

 	
 	
 pyzor.server	

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pyzor 1.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	absolute_source (pyzor.engines.common.BaseEngine attribute)

 	

 	(pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	(pyzor.engines.redis_.RedisDBHandle attribute)

 	Account (class in pyzor.account)

 	add_digest() (pyzor.message.SimpleDigestBasedRequest method)

 	

 	apply_method() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.gdbm_.ThreadedGdbmDBHandle method)

 	atomic_num_lines (pyzor.digest.DataDigester attribute)

 	AuthorizationError

B

 	

 	BaseEngine (class in pyzor.engines.common)

 	BatchClient (class in pyzor.client)

 	

 	BoundedThreadingServer (class in pyzor.server)

C

 	

 	check() (pyzor.client.Client method)

 	CheckClientRunner (class in pyzor.client)

 	CheckRequest (class in pyzor.message)

 	Client (class in pyzor.client)

 	

 	ClientRunner (class in pyzor.client)

 	ClientSideRequest (class in pyzor.message)

 	code (pyzor.CommError attribute)

 	

 	(pyzor.ProtocolError attribute)

 	(pyzor.TimeoutError attribute)

 	CommError

D

 	

 	DatabaseError

 	DataDigester (class in pyzor.digest)

 	DBHandle (class in pyzor.engines.common)

 	decode_date() (in module pyzor.engines.redis_)

 	decode_record() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	

 	decode_record_0() (pyzor.engines.gdbm_.GdbmDBHandle static method)

 	decode_record_1() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	digest (pyzor.digest.DataDigester attribute)

 	digest_payloads() (pyzor.digest.DataDigester class method)

 	dispatches (pyzor.server.RequestHandler attribute)

E

 	

 	email_ptrn (pyzor.digest.DataDigester attribute)

 	encode_date() (in module pyzor.engines.redis_)

 	encode_record() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	

 	ensure_complete() (pyzor.message.Message method)

 	

 	(pyzor.message.Request method)

 	(pyzor.message.Response method)

 	(pyzor.message.ThreadedMessage method)

 	error_value (pyzor.message.ThreadId attribute)

 	expand_homefiles() (in module pyzor.config)

F

 	

 	fields (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	flush() (pyzor.client.BatchClient method)

 	force() (pyzor.client.BatchClient method)

 	

 	Forwarder (class in pyzor.forwarder)

 	full_range (pyzor.message.ThreadId attribute)

G

 	

 	GdbmDBHandle (class in pyzor.engines.gdbm_)

 	generate() (pyzor.message.ThreadId class method)

 	get_code() (pyzor.message.Response method)

 	get_diag() (pyzor.message.Response method)

 	

 	get_op() (pyzor.message.Request method)

 	get_prefork_connections() (pyzor.engines.common.BaseEngine class method)

 	

 	(pyzor.engines.mysql.MySQLDBHandle class method)

 	(pyzor.engines.redis_.RedisDBHandle class method)

 	get_protocol_version() (pyzor.message.ThreadedMessage method)

 	get_thread() (pyzor.message.ThreadedMessage method)

H

 	

 	hack_all() (in module pyzor.hacks.py26)

 	hack_email() (in module pyzor.hacks.py26)

 	hack_select() (in module pyzor.hacks.py26)

 	handle() (pyzor.server.RequestHandler method)

 	handle_atomic() (pyzor.digest.DataDigester method)

 	handle_check() (pyzor.server.RequestHandler method)

 	handle_data() (pyzor.digest.HTMLStripper method)

 	handle_endtag() (pyzor.digest.HTMLStripper method)

 	handle_error() (pyzor.server.RequestHandler method)

 	

 	(pyzor.server.Server method)

 	handle_info() (pyzor.server.RequestHandler method)

 	handle_line() (pyzor.digest.DataDigester method)

 	

 	(pyzor.digest.PrintingDataDigester method)

 	

 	handle_pieced() (pyzor.digest.DataDigester method)

 	handle_pong() (pyzor.server.RequestHandler method)

 	handle_report() (pyzor.server.RequestHandler method)

 	handle_response() (pyzor.client.CheckClientRunner method)

 	

 	(pyzor.client.ClientRunner method)

 	(pyzor.client.InfoClientRunner method)

 	handle_starttag() (pyzor.digest.HTMLStripper method)

 	handle_whitelist() (pyzor.server.RequestHandler method)

 	handles_one_step (pyzor.engines.common.BaseEngine attribute)

 	

 	(pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	(pyzor.engines.redis_.RedisDBHandle attribute)

 	hash_key() (in module pyzor.account)

 	head_tuple() (pyzor.message.Response method)

 	HTMLStripper (class in pyzor.digest)

I

 	

 	in_ok_range() (pyzor.message.ThreadId method)

 	IncompleteMessageError

 	info() (pyzor.client.Client method)

 	InfoClientRunner (class in pyzor.client)

 	InfoRequest (class in pyzor.message)

 	

 	init_for_sending() (pyzor.message.Message method)

 	

 	(pyzor.message.ThreadedMessage method)

 	is_ok() (pyzor.message.Response method)

 	items() (pyzor.engines.common.BaseEngine method)

 	

 	(pyzor.engines.gdbm_.GdbmDBHandle method)

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

 	iteritems() (pyzor.engines.common.BaseEngine method)

 	

 	(pyzor.engines.gdbm_.GdbmDBHandle method)

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

K

 	

 	key_from_hexstr() (in module pyzor.account)

L

 	

 	load_access_file() (in module pyzor.config)

 	load_accounts() (in module pyzor.config)

 	load_config() (pyzor.server.PreForkServer method)

 	

 	(pyzor.server.Server method)

 	load_local_whitelist() (in module pyzor.config)

 	

 	load_passwd_file() (in module pyzor.config)

 	load_servers() (in module pyzor.config)

 	log (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	(pyzor.engines.redis_.RedisDBHandle attribute)

 	longstr_ptrn (pyzor.digest.DataDigester attribute)

M

 	

 	max_packet_size (pyzor.client.Client attribute)

 	

 	(pyzor.server.Server attribute)

 	Message (class in pyzor.message)

 	min_line_length (pyzor.digest.DataDigester attribute)

 	

 	multi_processing (pyzor.engines.common.DBHandle attribute)

 	multi_threaded (pyzor.engines.common.DBHandle attribute)

 	MySQLDBHandle (class in pyzor.engines.mysql)

N

 	

 	normalize() (pyzor.digest.DataDigester class method)

 	

 	normalize_html_part() (pyzor.digest.DataDigester static method)

O

 	

 	ok_code (pyzor.message.Response attribute)

 	ok_range (pyzor.message.ThreadId attribute)

 	

 	op (pyzor.message.CheckRequest attribute)

 	

 	(pyzor.message.ClientSideRequest attribute)

 	(pyzor.message.InfoRequest attribute)

 	(pyzor.message.PingRequest attribute)

 	(pyzor.message.PongRequest attribute)

 	(pyzor.message.ReportRequest attribute)

 	(pyzor.message.WhitelistRequest attribute)

P

 	

 	ping() (pyzor.client.Client method)

 	PingRequest (class in pyzor.message)

 	pong() (pyzor.client.Client method)

 	PongRequest (class in pyzor.message)

 	prefork (pyzor.engines.common.DBHandle attribute)

 	PreForkServer (class in pyzor.server)

 	PrintingDataDigester (class in pyzor.digest)

 	process_request() (pyzor.server.BoundedThreadingServer method)

 	process_request_thread() (pyzor.server.BoundedThreadingServer method)

 	ProcessMySQLDBHandle (class in pyzor.engines.mysql)

 	ProcessServer (class in pyzor.server)

 	ProtocolError

 	pyzor (module)

 	pyzor.account (module)

 	

 	pyzor.client (module)

 	pyzor.config (module)

 	pyzor.digest (module)

 	pyzor.engines (module)

 	pyzor.engines.common (module)

 	pyzor.engines.gdbm_ (module)

 	pyzor.engines.mysql (module)

 	pyzor.engines.redis_ (module)

 	pyzor.forwarder (module)

 	pyzor.hacks (module)

 	pyzor.hacks.py26 (module)

 	pyzor.message (module)

 	pyzor.server (module)

Q

 	

 	queue_forward_request() (pyzor.forwarder.Forwarder method)

R

 	

 	r_increment() (pyzor.engines.common.Record method)

 	r_update() (pyzor.engines.common.Record method)

 	read_response() (pyzor.client.Client method)

 	reconnect() (pyzor.engines.mysql.MySQLDBHandle method)

 	

 	(pyzor.engines.mysql.ProcessMySQLDBHandle method)

 	(pyzor.engines.mysql.ThreadedMySQLDBHandle method)

 	reconnect_period (pyzor.engines.mysql.MySQLDBHandle attribute)

 	Record (class in pyzor.engines.common)

 	RedisDBHandle (class in pyzor.engines.redis_)

 	reload_handler() (pyzor.server.Server method)

 	

 	reorganize_period (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	report() (pyzor.client.BatchClient method)

 	

 	(pyzor.client.Client method)

 	(pyzor.engines.common.BaseEngine method)

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

 	ReportRequest (class in pyzor.message)

 	Request (class in pyzor.message)

 	RequestHandler (class in pyzor.server)

 	Response (class in pyzor.message)

 	run() (pyzor.client.ClientRunner method)

S

 	

 	safe_call() (in module pyzor.engines.redis_)

 	send() (pyzor.client.Client method)

 	serve_forever() (pyzor.server.PreForkServer method)

 	Server (class in pyzor.server)

 	set_thread() (pyzor.message.ThreadedMessage method)

 	setup() (pyzor.message.ClientSideRequest method)

 	

 	(pyzor.message.Message method)

 	setup_logging() (in module pyzor.config)

 	should_handle_line() (pyzor.digest.DataDigester class method)

 	shutdown() (pyzor.server.PreForkServer method)

 	shutdown_handler() (pyzor.server.Server method)

 	

 	sign_msg() (in module pyzor.account)

 	SignatureError

 	SimpleDigestBasedRequest (class in pyzor.message)

 	SimpleDigestSpecBasedRequest (class in pyzor.message)

 	single_threaded (pyzor.engines.common.DBHandle attribute)

 	start_forwarding() (pyzor.forwarder.Forwarder method)

 	start_reorganizing() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	start_syncing() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	stop_forwarding() (pyzor.forwarder.Forwarder method)

 	sync_period (pyzor.engines.gdbm_.GdbmDBHandle attribute)

T

 	

 	this_version (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	ThreadedGdbmDBHandle (class in pyzor.engines.gdbm_)

 	ThreadedMessage (class in pyzor.message)

 	ThreadedMySQLDBHandle (class in pyzor.engines.mysql)

 	ThreadedRedisDBHandle (class in pyzor.engines.redis_)

 	

 	ThreadId (class in pyzor.message)

 	ThreadingServer (class in pyzor.server)

 	time_diff_allowance (pyzor.server.Server attribute)

 	timeout (pyzor.client.Client attribute)

 	TimeoutError

U

 	

 	UnsupportedVersionError

 	unwanted_txt_repl (pyzor.digest.DataDigester attribute)

 	

 	url_ptrn (pyzor.digest.DataDigester attribute)

V

 	

 	value (pyzor.digest.DataDigester attribute)

 	

 	verify_signature() (in module pyzor.account)

W

 	

 	whitelist() (pyzor.client.BatchClient method)

 	

 	(pyzor.client.Client method)

 	(pyzor.engines.common.BaseEngine method)

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

 	WhitelistRequest (class in pyzor.message)

 	wl_increment() (pyzor.engines.common.Record method)

 	

 	wl_update() (pyzor.engines.common.Record method)

 	ws_ptrn (pyzor.digest.DataDigester attribute)

 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Pyzor 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pyzor 1.0 documentation »

 All modules for which code is available

		logging

		pyzor

		pyzor.account

		pyzor.client

		pyzor.config

		pyzor.digest

		pyzor.engines.common

		pyzor.engines.gdbm_

		pyzor.engines.mysql

		pyzor.engines.redis_

		pyzor.forwarder

		pyzor.hacks.py26

		pyzor.message

		pyzor.server

 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/pyzor.gif

_modules/logging.html

 Navigation

 		
 index

 		
 modules |

 		Pyzor 1.0 documentation »

 		Module code »

 Source code for logging

Copyright 2001-2012 by Vinay Sajip. All Rights Reserved.
#
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Vinay Sajip
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2012 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, cStringIO, traceback, warnings, weakref

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
 'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
 'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
 'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
 'captureWarnings', 'critical', 'debug', 'disable', 'error',
 'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
 'info', 'log', 'makeLogRecord', 'setLoggerClass', 'warn', 'warning']

try:
 import codecs
except ImportError:
 codecs = None

try:
 import thread
 import threading
except ImportError:
 thread = None

__author__ = "Vinay Sajip <vinay_sajip@red-dove.com>"
__status__ = "production"
__version__ = "0.5.1.2"
__date__ = "07 February 2010"

#---
Miscellaneous module data
#---
try:
 unicode
 _unicode = True
except NameError:
 _unicode = False

#
_srcfile is used when walking the stack to check when we've got the first
caller stack frame.
#
if hasattr(sys, 'frozen'): #support for py2exe
 _srcfile = "logging%s__init__%s" % (os.sep, __file__[-4:])
elif __file__[-4:].lower() in ['.pyc', '.pyo']:
 _srcfile = __file__[:-4] + '.py'
else:
 _srcfile = __file__
_srcfile = os.path.normcase(_srcfile)

next bit filched from 1.5.2's inspect.py
def currentframe():
 """Return the frame object for the caller's stack frame."""
 try:
 raise Exception
 except:
 return sys.exc_info()[2].tb_frame.f_back

if hasattr(sys, '_getframe'): currentframe = lambda: sys._getframe(3)
done filching

_srcfile is only used in conjunction with sys._getframe().
To provide compatibility with older versions of Python, set _srcfile
to None if _getframe() is not available; this value will prevent
findCaller() from being called.
#if not hasattr(sys, "_getframe"):
_srcfile = None

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = 1

#
If you don't want threading information in the log, set this to zero
#
logThreads = 1

#
If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = 1

#
If you don't want process information in the log, set this to zero
#
logProcesses = 1

#---
Level related stuff
#---
#
Default levels and level names, these can be replaced with any positive set
of values having corresponding names. There is a pseudo-level, NOTSET, which
is only really there as a lower limit for user-defined levels. Handlers and
loggers are initialized with NOTSET so that they will log all messages, even
at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelNames = {
 CRITICAL : 'CRITICAL',
 ERROR : 'ERROR',
 WARNING : 'WARNING',
 INFO : 'INFO',
 DEBUG : 'DEBUG',
 NOTSET : 'NOTSET',
 'CRITICAL' : CRITICAL,
 'ERROR' : ERROR,
 'WARN' : WARNING,
 'WARNING' : WARNING,
 'INFO' : INFO,
 'DEBUG' : DEBUG,
 'NOTSET' : NOTSET,
}

def getLevelName(level):
 """
 Return the textual representation of logging level 'level'.

 If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
 INFO, DEBUG) then you get the corresponding string. If you have
 associated levels with names using addLevelName then the name you have
 associated with 'level' is returned.

 If a numeric value corresponding to one of the defined levels is passed
 in, the corresponding string representation is returned.

 Otherwise, the string "Level %s" % level is returned.
 """
 return _levelNames.get(level, ("Level %s" % level))

def addLevelName(level, levelName):
 """
 Associate 'levelName' with 'level'.

 This is used when converting levels to text during message formatting.
 """
 _acquireLock()
 try: #unlikely to cause an exception, but you never know...
 _levelNames[level] = levelName
 _levelNames[levelName] = level
 finally:
 _releaseLock()

def _checkLevel(level):
 if isinstance(level, (int, long)):
 rv = level
 elif str(level) == level:
 if level not in _levelNames:
 raise ValueError("Unknown level: %r" % level)
 rv = _levelNames[level]
 else:
 raise TypeError("Level not an integer or a valid string: %r" % level)
 return rv

#---
Thread-related stuff
#---

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if thread:
 _lock = threading.RLock()
else:
 _lock = None

def _acquireLock():
 """
 Acquire the module-level lock for serializing access to shared data.

 This should be released with _releaseLock().
 """
 if _lock:
 _lock.acquire()

def _releaseLock():
 """
 Release the module-level lock acquired by calling _acquireLock().
 """
 if _lock:
 _lock.release()

#---
The logging record
#---

class LogRecord(object):
 """
 A LogRecord instance represents an event being logged.

 LogRecord instances are created every time something is logged. They
 contain all the information pertinent to the event being logged. The
 main information passed in is in msg and args, which are combined
 using str(msg) % args to create the message field of the record. The
 record also includes information such as when the record was created,
 the source line where the logging call was made, and any exception
 information to be logged.
 """
 def __init__(self, name, level, pathname, lineno,
 msg, args, exc_info, func=None):
 """
 Initialize a logging record with interesting information.
 """
 ct = time.time()
 self.name = name
 self.msg = msg
 #
 # The following statement allows passing of a dictionary as a sole
 # argument, so that you can do something like
 # logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
 # Suggested by Stefan Behnel.
 # Note that without the test for args[0], we get a problem because
 # during formatting, we test to see if the arg is present using
 # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
 # and if the passed arg fails 'if self.args:' then no formatting
 # is done. For example, logger.warn('Value is %d', 0) would log
 # 'Value is %d' instead of 'Value is 0'.
 # For the use case of passing a dictionary, this should not be a
 # problem.
 if args and len(args) == 1 and isinstance(args[0], dict) and args[0]:
 args = args[0]
 self.args = args
 self.levelname = getLevelName(level)
 self.levelno = level
 self.pathname = pathname
 try:
 self.filename = os.path.basename(pathname)
 self.module = os.path.splitext(self.filename)[0]
 except (TypeError, ValueError, AttributeError):
 self.filename = pathname
 self.module = "Unknown module"
 self.exc_info = exc_info
 self.exc_text = None # used to cache the traceback text
 self.lineno = lineno
 self.funcName = func
 self.created = ct
 self.msecs = (ct - long(ct)) * 1000
 self.relativeCreated = (self.created - _startTime) * 1000
 if logThreads and thread:
 self.thread = thread.get_ident()
 self.threadName = threading.current_thread().name
 else:
 self.thread = None
 self.threadName = None
 if not logMultiprocessing:
 self.processName = None
 else:
 self.processName = 'MainProcess'
 mp = sys.modules.get('multiprocessing')
 if mp is not None:
 # Errors may occur if multiprocessing has not finished loading
 # yet - e.g. if a custom import hook causes third-party code
 # to run when multiprocessing calls import. See issue 8200
 # for an example
 try:
 self.processName = mp.current_process().name
 except StandardError:
 pass
 if logProcesses and hasattr(os, 'getpid'):
 self.process = os.getpid()
 else:
 self.process = None

 def __str__(self):
 return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
 self.pathname, self.lineno, self.msg)

 def getMessage(self):
 """
 Return the message for this LogRecord.

 Return the message for this LogRecord after merging any user-supplied
 arguments with the message.
 """
 if not _unicode: #if no unicode support...
 msg = str(self.msg)
 else:
 msg = self.msg
 if not isinstance(msg, basestring):
 try:
 msg = str(self.msg)
 except UnicodeError:
 msg = self.msg #Defer encoding till later
 if self.args:
 msg = msg % self.args
 return msg

def makeLogRecord(dict):
 """
 Make a LogRecord whose attributes are defined by the specified dictionary,
 This function is useful for converting a logging event received over
 a socket connection (which is sent as a dictionary) into a LogRecord
 instance.
 """
 rv = LogRecord(None, None, "", 0, "", (), None, None)
 rv.__dict__.update(dict)
 return rv

#---
Formatter classes and functions
#---

class Formatter(object):
 """
 Formatter instances are used to convert a LogRecord to text.

 Formatters need to know how a LogRecord is constructed. They are
 responsible for converting a LogRecord to (usually) a string which can
 be interpreted by either a human or an external system. The base Formatter
 allows a formatting string to be specified. If none is supplied, the
 default value of "%s(message)\\n" is used.

 The Formatter can be initialized with a format string which makes use of
 knowledge of the LogRecord attributes - e.g. the default value mentioned
 above makes use of the fact that the user's message and arguments are pre-
 formatted into a LogRecord's message attribute. Currently, the useful
 attributes in a LogRecord are described by:

 %(name)s Name of the logger (logging channel)
 %(levelno)s Numeric logging level for the message (DEBUG, INFO,
 WARNING, ERROR, CRITICAL)
 %(levelname)s Text logging level for the message ("DEBUG", "INFO",
 "WARNING", "ERROR", "CRITICAL")
 %(pathname)s Full pathname of the source file where the logging
 call was issued (if available)
 %(filename)s Filename portion of pathname
 %(module)s Module (name portion of filename)
 %(lineno)d Source line number where the logging call was issued
 (if available)
 %(funcName)s Function name
 %(created)f Time when the LogRecord was created (time.time()
 return value)
 %(asctime)s Textual time when the LogRecord was created
 %(msecs)d Millisecond portion of the creation time
 %(relativeCreated)d Time in milliseconds when the LogRecord was created,
 relative to the time the logging module was loaded
 (typically at application startup time)
 %(thread)d Thread ID (if available)
 %(threadName)s Thread name (if available)
 %(process)d Process ID (if available)
 %(message)s The result of record.getMessage(), computed just as
 the record is emitted
 """

 converter = time.localtime

 def __init__(self, fmt=None, datefmt=None):
 """
 Initialize the formatter with specified format strings.

 Initialize the formatter either with the specified format string, or a
 default as described above. Allow for specialized date formatting with
 the optional datefmt argument (if omitted, you get the ISO8601 format).
 """
 if fmt:
 self._fmt = fmt
 else:
 self._fmt = "%(message)s"
 self.datefmt = datefmt

 def formatTime(self, record, datefmt=None):
 """
 Return the creation time of the specified LogRecord as formatted text.

 This method should be called from format() by a formatter which
 wants to make use of a formatted time. This method can be overridden
 in formatters to provide for any specific requirement, but the
 basic behaviour is as follows: if datefmt (a string) is specified,
 it is used with time.strftime() to format the creation time of the
 record. Otherwise, the ISO8601 format is used. The resulting
 string is returned. This function uses a user-configurable function
 to convert the creation time to a tuple. By default, time.localtime()
 is used; to change this for a particular formatter instance, set the
 'converter' attribute to a function with the same signature as
 time.localtime() or time.gmtime(). To change it for all formatters,
 for example if you want all logging times to be shown in GMT,
 set the 'converter' attribute in the Formatter class.
 """
 ct = self.converter(record.created)
 if datefmt:
 s = time.strftime(datefmt, ct)
 else:
 t = time.strftime("%Y-%m-%d %H:%M:%S", ct)
 s = "%s,%03d" % (t, record.msecs)
 return s

 def formatException(self, ei):
 """
 Format and return the specified exception information as a string.

 This default implementation just uses
 traceback.print_exception()
 """
 sio = cStringIO.StringIO()
 traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
 s = sio.getvalue()
 sio.close()
 if s[-1:] == "\n":
 s = s[:-1]
 return s

 def usesTime(self):
 """
 Check if the format uses the creation time of the record.
 """
 return self._fmt.find("%(asctime)") >= 0

 def format(self, record):
 """
 Format the specified record as text.

 The record's attribute dictionary is used as the operand to a
 string formatting operation which yields the returned string.
 Before formatting the dictionary, a couple of preparatory steps
 are carried out. The message attribute of the record is computed
 using LogRecord.getMessage(). If the formatting string uses the
 time (as determined by a call to usesTime(), formatTime() is
 called to format the event time. If there is exception information,
 it is formatted using formatException() and appended to the message.
 """
 record.message = record.getMessage()
 if self.usesTime():
 record.asctime = self.formatTime(record, self.datefmt)
 s = self._fmt % record.__dict__
 if record.exc_info:
 # Cache the traceback text to avoid converting it multiple times
 # (it's constant anyway)
 if not record.exc_text:
 record.exc_text = self.formatException(record.exc_info)
 if record.exc_text:
 if s[-1:] != "\n":
 s = s + "\n"
 try:
 s = s + record.exc_text
 except UnicodeError:
 # Sometimes filenames have non-ASCII chars, which can lead
 # to errors when s is Unicode and record.exc_text is str
 # See issue 8924.
 # We also use replace for when there are multiple
 # encodings, e.g. UTF-8 for the filesystem and latin-1
 # for a script. See issue 13232.
 s = s + record.exc_text.decode(sys.getfilesystemencoding(),
 'replace')
 return s

#
The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
 """
 A formatter suitable for formatting a number of records.
 """
 def __init__(self, linefmt=None):
 """
 Optionally specify a formatter which will be used to format each
 individual record.
 """
 if linefmt:
 self.linefmt = linefmt
 else:
 self.linefmt = _defaultFormatter

 def formatHeader(self, records):
 """
 Return the header string for the specified records.
 """
 return ""

 def formatFooter(self, records):
 """
 Return the footer string for the specified records.
 """
 return ""

 def format(self, records):
 """
 Format the specified records and return the result as a string.
 """
 rv = ""
 if len(records) > 0:
 rv = rv + self.formatHeader(records)
 for record in records:
 rv = rv + self.linefmt.format(record)
 rv = rv + self.formatFooter(records)
 return rv

#---
Filter classes and functions
#---

class Filter(object):
 """
 Filter instances are used to perform arbitrary filtering of LogRecords.

 Loggers and Handlers can optionally use Filter instances to filter
 records as desired. The base filter class only allows events which are
 below a certain point in the logger hierarchy. For example, a filter
 initialized with "A.B" will allow events logged by loggers "A.B",
 "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
 initialized with the empty string, all events are passed.
 """
 def __init__(self, name=''):
 """
 Initialize a filter.

 Initialize with the name of the logger which, together with its
 children, will have its events allowed through the filter. If no
 name is specified, allow every event.
 """
 self.name = name
 self.nlen = len(name)

 def filter(self, record):
 """
 Determine if the specified record is to be logged.

 Is the specified record to be logged? Returns 0 for no, nonzero for
 yes. If deemed appropriate, the record may be modified in-place.
 """
 if self.nlen == 0:
 return 1
 elif self.name == record.name:
 return 1
 elif record.name.find(self.name, 0, self.nlen) != 0:
 return 0
 return (record.name[self.nlen] == ".")

class Filterer(object):
 """
 A base class for loggers and handlers which allows them to share
 common code.
 """
 def __init__(self):
 """
 Initialize the list of filters to be an empty list.
 """
 self.filters = []

 def addFilter(self, filter):
 """
 Add the specified filter to this handler.
 """
 if not (filter in self.filters):
 self.filters.append(filter)

 def removeFilter(self, filter):
 """
 Remove the specified filter from this handler.
 """
 if filter in self.filters:
 self.filters.remove(filter)

 def filter(self, record):
 """
 Determine if a record is loggable by consulting all the filters.

 The default is to allow the record to be logged; any filter can veto
 this and the record is then dropped. Returns a zero value if a record
 is to be dropped, else non-zero.
 """
 rv = 1
 for f in self.filters:
 if not f.filter(record):
 rv = 0
 break
 return rv

#---
Handler classes and functions
#---

_handlers = weakref.WeakValueDictionary() #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
 """
 Remove a handler reference from the internal cleanup list.
 """
 # This function can be called during module teardown, when globals are
 # set to None. If _acquireLock is None, assume this is the case and do
 # nothing.
 if (_acquireLock is not None and _handlerList is not None and
 _releaseLock is not None):
 _acquireLock()
 try:
 if wr in _handlerList:
 _handlerList.remove(wr)
 finally:
 _releaseLock()

def _addHandlerRef(handler):
 """
 Add a handler to the internal cleanup list using a weak reference.
 """
 _acquireLock()
 try:
 _handlerList.append(weakref.ref(handler, _removeHandlerRef))
 finally:
 _releaseLock()

class Handler(Filterer):
 """
 Handler instances dispatch logging events to specific destinations.

 The base handler class. Acts as a placeholder which defines the Handler
 interface. Handlers can optionally use Formatter instances to format
 records as desired. By default, no formatter is specified; in this case,
 the 'raw' message as determined by record.message is logged.
 """
 def __init__(self, level=NOTSET):
 """
 Initializes the instance - basically setting the formatter to None
 and the filter list to empty.
 """
 Filterer.__init__(self)
 self._name = None
 self.level = _checkLevel(level)
 self.formatter = None
 # Add the handler to the global _handlerList (for cleanup on shutdown)
 _addHandlerRef(self)
 self.createLock()

 def get_name(self):
 return self._name

 def set_name(self, name):
 _acquireLock()
 try:
 if self._name in _handlers:
 del _handlers[self._name]
 self._name = name
 if name:
 _handlers[name] = self
 finally:
 _releaseLock()

 name = property(get_name, set_name)

 def createLock(self):
 """
 Acquire a thread lock for serializing access to the underlying I/O.
 """
 if thread:
 self.lock = threading.RLock()
 else:
 self.lock = None

 def acquire(self):
 """
 Acquire the I/O thread lock.
 """
 if self.lock:
 self.lock.acquire()

 def release(self):
 """
 Release the I/O thread lock.
 """
 if self.lock:
 self.lock.release()

 def setLevel(self, level):
 """
 Set the logging level of this handler.
 """
 self.level = _checkLevel(level)

 def format(self, record):
 """
 Format the specified record.

 If a formatter is set, use it. Otherwise, use the default formatter
 for the module.
 """
 if self.formatter:
 fmt = self.formatter
 else:
 fmt = _defaultFormatter
 return fmt.format(record)

 def emit(self, record):
 """
 Do whatever it takes to actually log the specified logging record.

 This version is intended to be implemented by subclasses and so
 raises a NotImplementedError.
 """
 raise NotImplementedError('emit must be implemented '
 'by Handler subclasses')

 def handle(self, record):
 """
 Conditionally emit the specified logging record.

 Emission depends on filters which may have been added to the handler.
 Wrap the actual emission of the record with acquisition/release of
 the I/O thread lock. Returns whether the filter passed the record for
 emission.
 """
 rv = self.filter(record)
 if rv:
 self.acquire()
 try:
 self.emit(record)
 finally:
 self.release()
 return rv

 def setFormatter(self, fmt):
 """
 Set the formatter for this handler.
 """
 self.formatter = fmt

 def flush(self):
 """
 Ensure all logging output has been flushed.

 This version does nothing and is intended to be implemented by
 subclasses.
 """
 pass

 def close(self):
 """
 Tidy up any resources used by the handler.

 This version removes the handler from an internal map of handlers,
 _handlers, which is used for handler lookup by name. Subclasses
 should ensure that this gets called from overridden close()
 methods.
 """
 #get the module data lock, as we're updating a shared structure.
 _acquireLock()
 try: #unlikely to raise an exception, but you never know...
 if self._name and self._name in _handlers:
 del _handlers[self._name]
 finally:
 _releaseLock()

 def handleError(self, record):
 """
 Handle errors which occur during an emit() call.

 This method should be called from handlers when an exception is
 encountered during an emit() call. If raiseExceptions is false,
 exceptions get silently ignored. This is what is mostly wanted
 for a logging system - most users will not care about errors in
 the logging system, they are more interested in application errors.
 You could, however, replace this with a custom handler if you wish.
 The record which was being processed is passed in to this method.
 """
 if raiseExceptions and sys.stderr: # see issue 13807
 ei = sys.exc_info()
 try:
 traceback.print_exception(ei[0], ei[1], ei[2],
 None, sys.stderr)
 sys.stderr.write('Logged from file %s, line %s\n' % (
 record.filename, record.lineno))
 except IOError:
 pass # see issue 5971
 finally:
 del ei

class StreamHandler(Handler):
 """
 A handler class which writes logging records, appropriately formatted,
 to a stream. Note that this class does not close the stream, as
 sys.stdout or sys.stderr may be used.
 """

 def __init__(self, stream=None):
 """
 Initialize the handler.

 If stream is not specified, sys.stderr is used.
 """
 Handler.__init__(self)
 if stream is None:
 stream = sys.stderr
 self.stream = stream

 def flush(self):
 """
 Flushes the stream.
 """
 self.acquire()
 try:
 if self.stream and hasattr(self.stream, "flush"):
 self.stream.flush()
 finally:
 self.release()

 def emit(self, record):
 """
 Emit a record.

 If a formatter is specified, it is used to format the record.
 The record is then written to the stream with a trailing newline. If
 exception information is present, it is formatted using
 traceback.print_exception and appended to the stream. If the stream
 has an 'encoding' attribute, it is used to determine how to do the
 output to the stream.
 """
 try:
 msg = self.format(record)
 stream = self.stream
 fs = "%s\n"
 if not _unicode: #if no unicode support...
 stream.write(fs % msg)
 else:
 try:
 if (isinstance(msg, unicode) and
 getattr(stream, 'encoding', None)):
 ufs = u'%s\n'
 try:
 stream.write(ufs % msg)
 except UnicodeEncodeError:
 #Printing to terminals sometimes fails. For example,
 #with an encoding of 'cp1251', the above write will
 #work if written to a stream opened or wrapped by
 #the codecs module, but fail when writing to a
 #terminal even when the codepage is set to cp1251.
 #An extra encoding step seems to be needed.
 stream.write((ufs % msg).encode(stream.encoding))
 else:
 stream.write(fs % msg)
 except UnicodeError:
 stream.write(fs % msg.encode("UTF-8"))
 self.flush()
 except (KeyboardInterrupt, SystemExit):
 raise
 except:
 self.handleError(record)

class FileHandler(StreamHandler):
 """
 A handler class which writes formatted logging records to disk files.
 """
 def __init__(self, filename, mode='a', encoding=None, delay=0):
 """
 Open the specified file and use it as the stream for logging.
 """
 #keep the absolute path, otherwise derived classes which use this
 #may come a cropper when the current directory changes
 if codecs is None:
 encoding = None
 self.baseFilename = os.path.abspath(filename)
 self.mode = mode
 self.encoding = encoding
 self.delay = delay
 if delay:
 #We don't open the stream, but we still need to call the
 #Handler constructor to set level, formatter, lock etc.
 Handler.__init__(self)
 self.stream = None
 else:
 StreamHandler.__init__(self, self._open())

 def close(self):
 """
 Closes the stream.
 """
 self.acquire()
 try:
 if self.stream:
 self.flush()
 if hasattr(self.stream, "close"):
 self.stream.close()
 self.stream = None
 # Issue #19523: call unconditionally to
 # prevent a handler leak when delay is set
 StreamHandler.close(self)
 finally:
 self.release()

 def _open(self):
 """
 Open the current base file with the (original) mode and encoding.
 Return the resulting stream.
 """
 if self.encoding is None:
 stream = open(self.baseFilename, self.mode)
 else:
 stream = codecs.open(self.baseFilename, self.mode, self.encoding)
 return stream

 def emit(self, record):
 """
 Emit a record.

 If the stream was not opened because 'delay' was specified in the
 constructor, open it before calling the superclass's emit.
 """
 if self.stream is None:
 self.stream = self._open()
 StreamHandler.emit(self, record)

#---
Manager classes and functions
#---

class PlaceHolder(object):
 """
 PlaceHolder instances are used in the Manager logger hierarchy to take
 the place of nodes for which no loggers have been defined. This class is
 intended for internal use only and not as part of the public API.
 """
 def __init__(self, alogger):
 """
 Initialize with the specified logger being a child of this placeholder.
 """
 #self.loggers = [alogger]
 self.loggerMap = { alogger : None }

 def append(self, alogger):
 """
 Add the specified logger as a child of this placeholder.
 """
 #if alogger not in self.loggers:
 if alogger not in self.loggerMap:
 #self.loggers.append(alogger)
 self.loggerMap[alogger] = None

#
Determine which class to use when instantiating loggers.
#
_loggerClass = None

def setLoggerClass(klass):
 """
 Set the class to be used when instantiating a logger. The class should
 define __init__() such that only a name argument is required, and the
 __init__() should call Logger.__init__()
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 global _loggerClass
 _loggerClass = klass

def getLoggerClass():
 """
 Return the class to be used when instantiating a logger.
 """

 return _loggerClass

class Manager(object):
 """
 There is [under normal circumstances] just one Manager instance, which
 holds the hierarchy of loggers.
 """
 def __init__(self, rootnode):
 """
 Initialize the manager with the root node of the logger hierarchy.
 """
 self.root = rootnode
 self.disable = 0
 self.emittedNoHandlerWarning = 0
 self.loggerDict = {}
 self.loggerClass = None

 def getLogger(self, name):
 """
 Get a logger with the specified name (channel name), creating it
 if it doesn't yet exist. This name is a dot-separated hierarchical
 name, such as "a", "a.b", "a.b.c" or similar.

 If a PlaceHolder existed for the specified name [i.e. the logger
 didn't exist but a child of it did], replace it with the created
 logger and fix up the parent/child references which pointed to the
 placeholder to now point to the logger.
 """
 rv = None
 if not isinstance(name, basestring):
 raise TypeError('A logger name must be string or Unicode')
 if isinstance(name, unicode):
 name = name.encode('utf-8')
 _acquireLock()
 try:
 if name in self.loggerDict:
 rv = self.loggerDict[name]
 if isinstance(rv, PlaceHolder):
 ph = rv
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupChildren(ph, rv)
 self._fixupParents(rv)
 else:
 rv = (self.loggerClass or _loggerClass)(name)
 rv.manager = self
 self.loggerDict[name] = rv
 self._fixupParents(rv)
 finally:
 _releaseLock()
 return rv

 def setLoggerClass(self, klass):
 """
 Set the class to be used when instantiating a logger with this Manager.
 """
 if klass != Logger:
 if not issubclass(klass, Logger):
 raise TypeError("logger not derived from logging.Logger: "
 + klass.__name__)
 self.loggerClass = klass

 def _fixupParents(self, alogger):
 """
 Ensure that there are either loggers or placeholders all the way
 from the specified logger to the root of the logger hierarchy.
 """
 name = alogger.name
 i = name.rfind(".")
 rv = None
 while (i > 0) and not rv:
 substr = name[:i]
 if substr not in self.loggerDict:
 self.loggerDict[substr] = PlaceHolder(alogger)
 else:
 obj = self.loggerDict[substr]
 if isinstance(obj, Logger):
 rv = obj
 else:
 assert isinstance(obj, PlaceHolder)
 obj.append(alogger)
 i = name.rfind(".", 0, i - 1)
 if not rv:
 rv = self.root
 alogger.parent = rv

 def _fixupChildren(self, ph, alogger):
 """
 Ensure that children of the placeholder ph are connected to the
 specified logger.
 """
 name = alogger.name
 namelen = len(name)
 for c in ph.loggerMap.keys():
 #The if means ... if not c.parent.name.startswith(nm)
 if c.parent.name[:namelen] != name:
 alogger.parent = c.parent
 c.parent = alogger

#---
Logger classes and functions
#---

class Logger(Filterer):
 """
 Instances of the Logger class represent a single logging channel. A
 "logging channel" indicates an area of an application. Exactly how an
 "area" is defined is up to the application developer. Since an
 application can have any number of areas, logging channels are identified
 by a unique string. Application areas can be nested (e.g. an area
 of "input processing" might include sub-areas "read CSV files", "read
 XLS files" and "read Gnumeric files"). To cater for this natural nesting,
 channel names are organized into a namespace hierarchy where levels are
 separated by periods, much like the Java or Python package namespace. So
 in the instance given above, channel names might be "input" for the upper
 level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
 There is no arbitrary limit to the depth of nesting.
 """
 def __init__(self, name, level=NOTSET):
 """
 Initialize the logger with a name and an optional level.
 """
 Filterer.__init__(self)
 self.name = name
 self.level = _checkLevel(level)
 self.parent = None
 self.propagate = 1
 self.handlers = []
 self.disabled = 0

 def setLevel(self, level):
 """
 Set the logging level of this logger.
 """
 self.level = _checkLevel(level)

 def debug(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'DEBUG'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
 """
 if self.isEnabledFor(DEBUG):
 self._log(DEBUG, msg, args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'INFO'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
 """
 if self.isEnabledFor(INFO):
 self._log(INFO, msg, args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'WARNING'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
 """
 if self.isEnabledFor(WARNING):
 self._log(WARNING, msg, args, **kwargs)

 warn = warning

 def error(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'ERROR'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.error("Houston, we have a %s", "major problem", exc_info=1)
 """
 if self.isEnabledFor(ERROR):
 self._log(ERROR, msg, args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Convenience method for logging an ERROR with exception information.
 """
 kwargs['exc_info'] = 1
 self.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'CRITICAL'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
 """
 if self.isEnabledFor(CRITICAL):
 self._log(CRITICAL, msg, args, **kwargs)

 fatal = critical

 def log(self, level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level'.

 To pass exception information, use the keyword argument exc_info with
 a true value, e.g.

 logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
 """
 if not isinstance(level, int):
 if raiseExceptions:
 raise TypeError("level must be an integer")
 else:
 return
 if self.isEnabledFor(level):
 self._log(level, msg, args, **kwargs)

 def findCaller(self):
 """
 Find the stack frame of the caller so that we can note the source
 file name, line number and function name.
 """
 f = currentframe()
 #On some versions of IronPython, currentframe() returns None if
 #IronPython isn't run with -X:Frames.
 if f is not None:
 f = f.f_back
 rv = "(unknown file)", 0, "(unknown function)"
 while hasattr(f, "f_code"):
 co = f.f_code
 filename = os.path.normcase(co.co_filename)
 if filename == _srcfile:
 f = f.f_back
 continue
 rv = (co.co_filename, f.f_lineno, co.co_name)
 break
 return rv

 def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None):
 """
 A factory method which can be overridden in subclasses to create
 specialized LogRecords.
 """
 rv = LogRecord(name, level, fn, lno, msg, args, exc_info, func)
 if extra is not None:
 for key in extra:
 if (key in ["message", "asctime"]) or (key in rv.__dict__):
 raise KeyError("Attempt to overwrite %r in LogRecord" % key)
 rv.__dict__[key] = extra[key]
 return rv

 def _log(self, level, msg, args, exc_info=None, extra=None):
 """
 Low-level logging routine which creates a LogRecord and then calls
 all the handlers of this logger to handle the record.
 """
 if _srcfile:
 #IronPython doesn't track Python frames, so findCaller raises an
 #exception on some versions of IronPython. We trap it here so that
 #IronPython can use logging.
 try:
 fn, lno, func = self.findCaller()
 except ValueError:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 else:
 fn, lno, func = "(unknown file)", 0, "(unknown function)"
 if exc_info:
 if not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
 self.handle(record)

 def handle(self, record):
 """
 Call the handlers for the specified record.

 This method is used for unpickled records received from a socket, as
 well as those created locally. Logger-level filtering is applied.
 """
 if (not self.disabled) and self.filter(record):
 self.callHandlers(record)

 def addHandler(self, hdlr):
 """
 Add the specified handler to this logger.
 """
 _acquireLock()
 try:
 if not (hdlr in self.handlers):
 self.handlers.append(hdlr)
 finally:
 _releaseLock()

 def removeHandler(self, hdlr):
 """
 Remove the specified handler from this logger.
 """
 _acquireLock()
 try:
 if hdlr in self.handlers:
 self.handlers.remove(hdlr)
 finally:
 _releaseLock()

 def callHandlers(self, record):
 """
 Pass a record to all relevant handlers.

 Loop through all handlers for this logger and its parents in the
 logger hierarchy. If no handler was found, output a one-off error
 message to sys.stderr. Stop searching up the hierarchy whenever a
 logger with the "propagate" attribute set to zero is found - that
 will be the last logger whose handlers are called.
 """
 c = self
 found = 0
 while c:
 for hdlr in c.handlers:
 found = found + 1
 if record.levelno >= hdlr.level:
 hdlr.handle(record)
 if not c.propagate:
 c = None #break out
 else:
 c = c.parent
 if (found == 0) and raiseExceptions and not self.manager.emittedNoHandlerWarning:
 sys.stderr.write("No handlers could be found for logger"
 " \"%s\"\n" % self.name)
 self.manager.emittedNoHandlerWarning = 1

 def getEffectiveLevel(self):
 """
 Get the effective level for this logger.

 Loop through this logger and its parents in the logger hierarchy,
 looking for a non-zero logging level. Return the first one found.
 """
 logger = self
 while logger:
 if logger.level:
 return logger.level
 logger = logger.parent
 return NOTSET

 def isEnabledFor(self, level):
 """
 Is this logger enabled for level 'level'?
 """
 if self.manager.disable >= level:
 return 0
 return level >= self.getEffectiveLevel()

 def getChild(self, suffix):
 """
 Get a logger which is a descendant to this one.

 This is a convenience method, such that

 logging.getLogger('abc').getChild('def.ghi')

 is the same as

 logging.getLogger('abc.def.ghi')

 It's useful, for example, when the parent logger is named using
 __name__ rather than a literal string.
 """
 if self.root is not self:
 suffix = '.'.join((self.name, suffix))
 return self.manager.getLogger(suffix)

class RootLogger(Logger):
 """
 A root logger is not that different to any other logger, except that
 it must have a logging level and there is only one instance of it in
 the hierarchy.
 """
 def __init__(self, level):
 """
 Initialize the logger with the name "root".
 """
 Logger.__init__(self, "root", level)

_loggerClass = Logger

class LoggerAdapter(object):
 """
 An adapter for loggers which makes it easier to specify contextual
 information in logging output.
 """

 def __init__(self, logger, extra):
 """
 Initialize the adapter with a logger and a dict-like object which
 provides contextual information. This constructor signature allows
 easy stacking of LoggerAdapters, if so desired.

 You can effectively pass keyword arguments as shown in the
 following example:

 adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
 """
 self.logger = logger
 self.extra = extra

 def process(self, msg, kwargs):
 """
 Process the logging message and keyword arguments passed in to
 a logging call to insert contextual information. You can either
 manipulate the message itself, the keyword args or both. Return
 the message and kwargs modified (or not) to suit your needs.

 Normally, you'll only need to override this one method in a
 LoggerAdapter subclass for your specific needs.
 """
 kwargs["extra"] = self.extra
 return msg, kwargs

 def debug(self, msg, *args, **kwargs):
 """
 Delegate a debug call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.debug(msg, *args, **kwargs)

 def info(self, msg, *args, **kwargs):
 """
 Delegate an info call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.info(msg, *args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 """
 Delegate a warning call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.warning(msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 """
 Delegate an error call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.error(msg, *args, **kwargs)

 def exception(self, msg, *args, **kwargs):
 """
 Delegate an exception call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 kwargs["exc_info"] = 1
 self.logger.error(msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 """
 Delegate a critical call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.critical(msg, *args, **kwargs)

 def log(self, level, msg, *args, **kwargs):
 """
 Delegate a log call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.log(level, msg, *args, **kwargs)

 def isEnabledFor(self, level):
 """
 See if the underlying logger is enabled for the specified level.
 """
 return self.logger.isEnabledFor(level)

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---
Configuration classes and functions
#---

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

def basicConfig(**kwargs):
 """
 Do basic configuration for the logging system.

 This function does nothing if the root logger already has handlers
 configured. It is a convenience method intended for use by simple scripts
 to do one-shot configuration of the logging package.

 The default behaviour is to create a StreamHandler which writes to
 sys.stderr, set a formatter using the BASIC_FORMAT format string, and
 add the handler to the root logger.

 A number of optional keyword arguments may be specified, which can alter
 the default behaviour.

 filename Specifies that a FileHandler be created, using the specified
 filename, rather than a StreamHandler.
 filemode Specifies the mode to open the file, if filename is specified
 (if filemode is unspecified, it defaults to 'a').
 format Use the specified format string for the handler.
 datefmt Use the specified date/time format.
 level Set the root logger level to the specified level.
 stream Use the specified stream to initialize the StreamHandler. Note
 that this argument is incompatible with 'filename' - if both
 are present, 'stream' is ignored.

 Note that you could specify a stream created using open(filename, mode)
 rather than passing the filename and mode in. However, it should be
 remembered that StreamHandler does not close its stream (since it may be
 using sys.stdout or sys.stderr), whereas FileHandler closes its stream
 when the handler is closed.
 """
 # Add thread safety in case someone mistakenly calls
 # basicConfig() from multiple threads
 _acquireLock()
 try:
 if len(root.handlers) == 0:
 filename = kwargs.get("filename")
 if filename:
 mode = kwargs.get("filemode", 'a')
 hdlr = FileHandler(filename, mode)
 else:
 stream = kwargs.get("stream")
 hdlr = StreamHandler(stream)
 fs = kwargs.get("format", BASIC_FORMAT)
 dfs = kwargs.get("datefmt", None)
 fmt = Formatter(fs, dfs)
 hdlr.setFormatter(fmt)
 root.addHandler(hdlr)
 level = kwargs.get("level")
 if level is not None:
 root.setLevel(level)
 finally:
 _releaseLock()

#---
Utility functions at module level.
Basically delegate everything to the root logger.
#---

def getLogger(name=None):
 """
 Return a logger with the specified name, creating it if necessary.

 If no name is specified, return the root logger.
 """
 if name:
 return Logger.manager.getLogger(name)
 else:
 return root

#def getRootLogger():
"""
Return the root logger.
#
Note that getLogger('') now does the same thing, so this function is
deprecated and may disappear in the future.
"""
return root

def critical(msg, *args, **kwargs):
 """
 Log a message with severity 'CRITICAL' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.error(msg, *args, **kwargs)

def exception(msg, *args, **kwargs):
 """
 Log a message with severity 'ERROR' on the root logger,
 with exception information.
 """
 kwargs['exc_info'] = 1
 error(msg, *args, **kwargs)

def warning(msg, *args, **kwargs):
 """
 Log a message with severity 'WARNING' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.warning(msg, *args, **kwargs)

warn = warning

def info(msg, *args, **kwargs):
 """
 Log a message with severity 'INFO' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
 """
 Log a message with severity 'DEBUG' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.debug(msg, *args, **kwargs)

def log(level, msg, *args, **kwargs):
 """
 Log 'msg % args' with the integer severity 'level' on the root logger.
 """
 if len(root.handlers) == 0:
 basicConfig()
 root.log(level, msg, *args, **kwargs)

def disable(level):
 """
 Disable all logging calls of severity 'level' and below.
 """
 root.manager.disable = level

def shutdown(handlerList=_handlerList):
 """
 Perform any cleanup actions in the logging system (e.g. flushing
 buffers).

 Should be called at application exit.
 """
 for wr in reversed(handlerList[:]):
 #errors might occur, for example, if files are locked
 #we just ignore them if raiseExceptions is not set
 try:
 h = wr()
 if h:
 try:
 h.acquire()
 h.flush()
 h.close()
 except (IOError, ValueError):
 # Ignore errors which might be caused
 # because handlers have been closed but
 # references to them are still around at
 # application exit.
 pass
 finally:
 h.release()
 except:
 if raiseExceptions:
 raise
 #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

Null handler

class NullHandler(Handler):
 """
 This handler does nothing. It's intended to be used to avoid the
 "No handlers could be found for logger XXX" one-off warning. This is
 important for library code, which may contain code to log events. If a user
 of the library does not configure logging, the one-off warning might be
 produced; to avoid this, the library developer simply needs to instantiate
 a NullHandler and add it to the top-level logger of the library module or
 package.
 """
 def handle(self, record):
 pass

 def emit(self, record):
 pass

 def createLock(self):
 self.lock = None

Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
 """
 Implementation of showwarnings which redirects to logging, which will first
 check to see if the file parameter is None. If a file is specified, it will
 delegate to the original warnings implementation of showwarning. Otherwise,
 it will call warnings.formatwarning and will log the resulting string to a
 warnings logger named "py.warnings" with level logging.WARNING.
 """
 if file is not None:
 if _warnings_showwarning is not None:
 _warnings_showwarning(message, category, filename, lineno, file, line)
 else:
 s = warnings.formatwarning(message, category, filename, lineno, line)
 logger = getLogger("py.warnings")
 if not logger.handlers:
 logger.addHandler(NullHandler())
 logger.warning("%s", s)

def captureWarnings(capture):
 """
 If capture is true, redirect all warnings to the logging package.
 If capture is False, ensure that warnings are not redirected to logging
 but to their original destinations.
 """
 global _warnings_showwarning
 if capture:
 if _warnings_showwarning is None:
 _warnings_showwarning = warnings.showwarning
 warnings.showwarning = _showwarning
 else:
 if _warnings_showwarning is not None:
 warnings.showwarning = _warnings_showwarning
 _warnings_showwarning = None

 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

